Links

Custom Lookup Tables

Enrich events with your own stored data

Overview

Custom Lookup Tables (also referred to as simply "Lookup Tables") allow you to store and reference custom enrichment data in Panther. This means you can reference this added context in detections and alerts. It may be particularly useful to create Lookup Tables containing identity/asset information, vulnerability context, or network maps.
You can associate one or more log types with your Lookup Table—then all logs of those types will contain enrichment data from your Lookup Table. See an example of writing a detection that references Lookup Table data below.
Note that there are also Panther-managed Lookup Tables, including Enrichment Providers like GreyNoise and IPinfo, as well as Identity Provider Profiles. Consider using Global helpers instead when extra information is only needed for a few specific detections and will not be frequently updated.
To increase the limit on the number of Lookup Tables or the size of Lookup Tables in your account, please contact your Panther support team.

How Lookup Tables work

A diagram showing how Lookup Tables work: On the left, there is a code box labeled "Incoming logs." An arrow branches off the logs and points to a Lookup Table including "bad_actor_ip" and "bad_actor_name." On the right, an arrow goes from the Lookup Table to an Alert Event, showing the alert you would receive based on the log example.
Your configured Lookup Tables are associated with one or more log types, connected by foreign key fields called Selectors. Data enrichment begins prior to log events received by the detections engine, thus every incoming log event with a match in your Lookup Table will be enriched. If a match is found, a p_enrichment field is appended to the event and accessed within a detection using deep_get() or DeepKey. The p_enrichment field will contain:
  • One or more Lookup Table name(s) that matched the incoming log event
  • The name of the selector from the incoming log that matched the Lookup Table
  • The data from the Lookup Table that matched via the Lookup Table's primary key (including an injected p_match field containing the selector value that matched)
This is the structure of p_enrichment fields:
'p_enrichment': {
<name of lookup table1>: {
<name of selector>: {
'p_match': <value of selector>,
<lookup key>: <lookup value>,
...
}
}
}

How is data matched between logs and Lookup Tables?

When configuring a Lookup Table, you will define the following:
  • Primary key: a column in the Lookup Table
  • Selector(s): one or more fields within the log type(s) the Lookup Table is associated to
When Panther parses an associated log, it compares the value of the selector(s) in the event with the values of the primary key in the Lookup Table. If a match is found, Panther adds the corresponding row from the Lookup Table to the log event's p_enrichment struct, and injects a p_match field containing the value that matched.

Prerequisites for configuring a Lookup Table

  • A schema specifically for your Lookup Table data.
    • This describes the shape of your Lookup Table data.
  • Selector(s) from your incoming logs.
    • The values from these selectors will be used to search for matches in your Lookup Table data.
  • A primary key for your Lookup Table data.
    • This primary key is one of the fields you defined in your Lookup Table's schema. The value of the primary key is what will be compared with the value of the selector(s) from your incoming logs.
    • See the below Primary key data types section to learn more about primary key requirements.
  • For local development and CI/CD: ensure you have the necessary configuration files in your environment.

Primary key data types

Your Lookup Table's primary key column must be one of the following data types:
  • String
  • Number
  • Array (of strings or numbers)
    • Using an array lets you associate one row in your Lookup Table with multiple string or number primary key values. This prevents you from having to duplicate a certain row of data for multiple primary keys.

Example: string array vs. string primary key type

Perhaps you'd like to store user data in a Lookup Table so that incoming log events associated with a certain user are enriched with additional personal information. You'd like to match on the user's email address, which means the email field will be the primary key in the Lookup Table and the selector in the log events.
You are deciding whether the primary key column in your Lookup Table should be of type string or string array. First, review the below two events you might expect to receive from your log source:
# Incoming log event one
{
"actor_email": "[email protected]",
"action": "LOGIN"
}
# Incoming log event two
{
"actor_email": "[email protected]",
"action": "EXPORT_FILE"
}
Note that the two email addresses ([email protected] and [email protected]) belong to the same user, Jane Doe.
When Panther receives these events, you would like to use a Lookup Table to enrich each of them with Jane's full name and role. After enrichment, these events would look like the following:
# Log event one after enrichment
{
"actor_email": "[email protected]",
"action": "LOGIN",
"p_enrichment": {
"<lookup_table_name>": {
"actor_email": {
"full_name": "Jane Doe",
"p_match": "[email protected]",
"role": "ADMIN"
}
}
}
}
# Log event two after enrichment
{
"actor_email": "[email protected]",
"action": "EXPORT_FILE",
"p_enrichment": {
"<lookup_table_name>": {
"actor_email": {
"full_name": "Jane Doe",
"p_match": "[email protected]",
"role": "ADMIN"
}
}
}
}
You can accomplish this enrichment by defining a Lookup Table with either:
  • (Recommended) A primary key column that is of type array of strings
  • A primary key column that is of type string
Using a Lookup Table with a primary key column that is of type array of strings, you can include Jane's multiple email addresses in one primary key entry, associated to one row of data. This might look like the following:
email (primary_key)
full_name
role
"Jane Doe"
"ADMIN"
Alternatively, you can define a Lookup Table with a primary key column that is of type string. However, because the match between the event and Lookup Table is made on the user's email address, and a user can have multiple email addresses (as is shown in Jane's case), you must duplicate the Lookup Table row for each email. This would look like the following:
email (primary_key)
full_name
role
"Jane Doe"
"ADMIN"
"Jane Doe"
"ADMIN"
While both options yield the same result (i.e., log events are enriched in the same way), defining a Lookup Table with an array of strings primary key is recommended for its convenience and reduced proneness to maintenance error.

How to configure a Lookup Table

After fulfilling the prerequisites, Lookup tables can be created and configured using either of the following methods:
After choosing one of these methods, you can opt to work within the Panther Console or with PAT.
The maximum size for a row in a Lookup Table is 65535 bytes.

Option 1: Import via file upload

This option is best for data that is relatively static, such as information about AWS accounts or corporate subnets. You may want to set up a Lookup Table via a File Upload in the Panther Console. For example, a possible use case is adding metadata to distinguish developer accounts from production accounts in your AWS CloudTrail logs.
You can import via file upload through the Panther Console or with PAT:
Panther Console import via file upload
  1. 1.
    Log in to the Panther Console.
  2. 2.
    From the left sidebar, click Configure > Lookup Tables.
  3. 3.
    In the upper right side of the page, click Create New to add a new Lookup Table.
    The image shows a Lookup Tables header with a blue Create New button on the right side.
  4. 4.
    Configure the Lookup Table Basic Information:
    • Enter a descriptive Lookup Name.
      • In the example screen shot, we use account_metadata.
    • Enter a Description (optional) and a Reference (optional). Description is meant for content about the table, while Reference can be used to hyperlink to an internal resource.
    • Next to Enabled? toggle the setting to Yes. Note: This is required to import your data later in this process.
  5. 5.
    Click Continue.
  6. 6.
    Configure the Associated Log Types:
    • Select the Log Type from the dropdown.
    • Type in the name of the Selectors, the foreign key fields from the log type you want enriched with your Lookup Table.
    • You also can reference attributes in nested objects using JSON path syntax. For example, if you wanted to reference a field in a map you could do $.field.subfield.
    • Click Add Log Type to add another if needed.
      In the example screen shot above, we selected AWS.CloudTrail logs and typed in accountID and recipientAccountID to represent keys in the CloudTrail logs.
  7. 7.
    Click Continue.
  8. 8.
    Configure the Table Schema. Note: If you have not already created a new schema, please see our documentation on creating schemas. You can also use your Lookup Table data to infer a schema. Once you have created a schema, you will be able to choose it from the dropdown on the Table Schema page while configuring a Lookup Table. Note: CSV schemas require column headers to work with Lookup Tables.
    • Select a Schema Name from the dropdown.
    • Select a Primary Key Name from the dropdown. This should be a unique column on the table, such as accountID.
      The image shows the Table Schema form from the Panther Console. The Schema Name field is filled in with "Custom.AWSaccountIDs" and the Primary Key Name field is set to "awsacctid."
  9. 9.
    Click Continue.
  10. 10.
    Drag and drop a file or click Select File to choose the file of your Lookup Table data to import. The file must be in .csv or .jsonl format.
    The image shows the "Import Data" screen. There is an area to drag and drop a CSV file and a button labeled "Select file."
  11. 11.
    Click Finish Setup. A source setup success page will populate.
  12. 12.
    Optionally, next to to Set an alarm in case this lookup table doesn't receive any data?, toggle the setting to YES to enable an alarm.
    • Fill in the Number and Period fields to indicate how often Panther should send you this notification.
    • The alert destinations for this alarm are displayed at the bottom of the page. To configure and customize where your notification is sent, see documentation on Panther Destinations.
    The image shows a success page in the Panther Console after creating a Lookup Table. There is an option to set an  alarm in case this Lookup Table doesn't receive any data, and dropdown selectors to choose a time period when you receive the alerts. At the bottom, there is a section showing which destinations will receive the alert.
    Note: Notifications generated for a Lookup Table upload failing are accessible in the System Errors tab within the Alerts & Errors page in the Panther Console.
Once finished, you should be returned to the Lookup Table overview screen. Ensure that your new Lookup Table is listed.
PAT import via file upload
Note: Uploading data via Panther Analysis Tool works only for the small size of lookup data (< 1MB) that is mostly static. For larger or frequently changed files, we recommend using S3 to deliver them.

File setup

A Lookup Table requires the following files:
  • A YAML specification file containing the configuration for the table
  • A YAML file defining the schema to use when loading data into the table
  • A JSON or CSV file containing data to load into the table (optional, read further).

Folder setup

All files related to your Lookup Tables must be stored in a folder with a name containing lookup_tables. This could be a top-level lookup_tables directory, or sub-directories with names matching *lookup_tables*. You can use the Panther Analysis repo as a reference.

Writing the configuration files

It's usually prudent to begin writing the schema config first, because the table config will reference some of those values.
  1. 1.
    Create a YAML file for the schema, and save it with the rest of your custom schemas, outside the lookup_tables directory (for example, /schemas in the root of your panther analysis repo). This schema defines how to read the files you'll use to upload data to the table. If using a CSV file for data, then the schema should be able to parse CSV. The table schema is formatted the same as a log schema. For more information on writing schemas, read our documentation around managing Log Schemas.
  2. 2.
    Next, create a YAML file for the table configuration. For a Lookup Table with data stored in a local file, an example configuration would look like:
    AnalysisType: lookup_table
    LookupName: my_lookup_table # A unique display name
    Schema: Custom.MyTableSchema # The schema defined in the previous step
    Filename: ./my_lookup_table_data.csv # Relative path to data
    Description: >
    A handy description of what information this table contains.
    For example, this table might convert IP addresses to hostnames
    Reference: >
    A URL to some additional documentation around this table
    Enabled: true # Set to false to stop using the table
    LogTypeMap:
    PrimaryKey: ip # The primary key of the table
    AssociatedLogTypes: # A list of log types to match this table to
    - LogType: AWS.CloudTrail
    Selectors:
    - "sourceIPAddress" # A field in CloudTrail logs
    - "p_any_ip_addresses" # A panther-generated field works too
    - LogType: Okta.SystemLog
    Selectors:
    - "$.client.ipAddress" # Paths to JSON values are allowed
  3. 3.
    Upload the schema file by running the update schemas command from the repository root: panther_analysis_tool update-custom-schemas ./schemas
  4. 4.
    Finally, from the root of the repo, upload the lookup table: panther_analysis_tool upload

Update Lookup Tables via Panther Analysis Tool:

  1. 1.
    Locate the YAML configuration file for the Lookup Table in question.
  2. 2.
    Open the file, and look for the field Filename. You should see a file path which leads to the data file.
  3. 3.
    Update or replace the file indicated in Filename.
  4. 4.
    Push your changes to Panther with the following code:
    panther_analysis_tool upload
    Optionally, you can specify only to upload the Lookup Table:
    panther_analysis_tool upload --filter AnalysisType=lookup_table

Option 2: Sync via S3 source

In some cases, you may want to sync from an S3 source to set up a Lookup Table. For example, if you want to know what groups and permission levels are associated with the employees at your company. In this scenario, your company might have an AWS S3 source with an up-to-date copy of their Active Directory listing that includes groups and permissions information.
This option is best for a larger amount of data that updates more frequently from an S3 bucket. Any changes in the S3 bucket will sync to Panther.
You can sync via S3 through the Panther Console or with PAT:
Panther Console sync via s3
  1. 1.
    Log in to the Panther Console.
  2. 2.
    In the left sidebar, click Configure > Lookup Tables.
  3. 3.
    In the upper right side of the page, click Create New to add a new Lookup Table.
    The image shows a Lookup Tables header with a blue Create New button on the right side.
  4. 4.
    Configure the Lookup Table Basic Information:
    • Enter a descriptive Lookup Name.
    • Enter a Description (optional) and a Reference (optional).
      • Description is meant for content about the table, while Reference can be used to hyperlink to an internal resource.
    • Make sure the Enabled? toggle is set to Yes.
      • Note: This is required to import your data later in this process.
    The image shows the Lookup Table Basic Information form from the Panther Console. The Lookup Name field is filled in with "Employee Directory." It is enabled. The description says "Directory with groups and permissions a specific user is associated with." There is a blue button labeled "Continue" at the bottom.
  5. 5.
    Click Continue.
  6. 6.
    Configure the Associated Log Types:
    • Select the Log Type from the dropdown.
    • Type in the name of the Selectors, the foreign key fields from the log type you want enriched with your Lookup Table.
    • Click Add Log Type to add another if needed.
      The image shows the Associated Log Types form from the Panther Console. The Log Type field is set to AWS.VPCFlow. Selectors is set to "account."
      In the example screen shot above, we selected AWS.VPCFlow logs and typed in account to represent keys in the VPC Flow logs.
  7. 7.
    Click Continue.
  8. 8.
    Configure the Table Schema. Note: If you have not already created a new schema, please see our documentation on creating schemas. Once you have created a schema, you will be able to select it from the dropdown on the Table Schema page while configuring a Lookup Table.
    1. 1.
      Select a Schema Name from the dropdown.
    2. 2.
      Select a Primary Key Name from the dropdown. This should be a unique column on the table, such as accountID.
  9. 9.
    Click Continue.
  10. 10.
    On the "Choose Import Method" page, click Set Up next to "Sync Data from an S3 Bucket."
    The image shows the "Choose Import Method" page in the Panther Console. The options are Import via File Upload and Sync Data from an S3 Bucket. The Setup button is circled next to "Sync Data from an S3 Bucket."
  11. 11.
    Set up your S3 source.
    • Enter the Account ID, the 12-digit AWS Account ID where the S3 bucket is located.
    • Enter the S3 URI, the unique path that identifies the specific S3 bucket.
    • Optionally, enter the KMS Key if your data is encrypted using KMS-SSE.
    • Enter the Update Period, the cadence your S3 source gets updated (defaulted to 1 hour).
      The image shows the "Set up your S3 source" form from the Panther Console. There are fields for Account ID, S3 URI, KMS Key, and selectors to choose the Update Period.
  12. 12.
    Click Continue.
  13. 13.
    Set up an IAM Role.
    • Please see the next section, Creating an IAM Role, for instructions on the three options available to do this.
  14. 14.
    Click Finish Setup. A source setup success page will populate.
  15. 15.
    Optionally, next to to Set an alarm in case this lookup table doesn't receive any data?, toggle the setting to YES to enable an alarm.
    • Fill in the Number and Period fields to indicate how often Panther should send you this notification.
    • The alert destinations for this alarm are displayed at the bottom of the page. To configure and customize where your notification is sent, see documentation on Panther Destinations.
The image shows a success page in the Panther Console after creating a Lookup Table. There is an option to set an  alarm in case this Lookup Table doesn't receive any data, and dropdown selectors to choose a time period when you receive the alerts. At the bottom, there is a section showing which destinations will receive the alert.
Note: Notifications generated for a Lookup Table upload failing are accessible in the System Errors tab within the Alerts & Errors page in the Panther Console.

Creating an IAM Role

There are three options for creating an IAM Role to use with your Panther Lookup Table using an S3 source:

Create an IAM role using AWS Console UI

  1. 1.
    On the "Set Up an IAM role" page, during the process of creating a Lookup Table with an S3 source, locate the tile labeled "Using the AWS Console UI". On the right side of the tile, click Select.
  2. 2.
    Click Launch Console UI.
    The image shows the screen after you choose to use AWS UI to set up your role. There is a green button in the center labeled "Launch Coonsole UI." At the bottom, there is a field to enter your Role ARN.
    • You will be redirected to the AWS console in a new browser tab, with the template URL pre-filled.
    • The CloudFormation stack will create an AWS IAM role with the minimum required permissions to read objects from your S3 bucket.
    • Click the "Outputs" tab of the CloudFormation stack in AWS, and note the Role ARN.
  3. 3.
    Navigate back to your Panther account.
  4. 4.
    On the "Use AWS UI to set up your role" page, enter the Role ARN.
  5. 5.
    Click Finish Setup.
Create an IAM role using CloudFormation Template File
  1. 1.
    On the "Set Up an IAM role" page, during the process of creating a Lookup Table with an S3 source, locate the tile labeled "CloudFormation Template File". On the right side of the tile, click Select.
  2. 2.
    Click CloudFormation template, which downloads the template to apply it through your own pipeline.
  3. 3.
    Upload the template file in AWS:
    1. 1.
      Open your AWS console and navigate to the CloudFormation product.
    2. 2.
      Click Create stack.
    3. 3.
      Click Upload a template file and select the CloudFormation template you downloaded.
  4. 4.
    On the "CloudFormation Template" page in Panther, enter the Role ARN.
  5. 5.
    Click Finish Setup.

Create an IAM role manually

  1. 1.
    On the "Set Up an IAM role" page, during the process of creating a Lookup Table with an S3 source, click the link that says I want to set everything up on my own.
  2. 2.
    Create the required IAM role. You may create the required IAM role manually or through your own automation. The role must be named using the format PantherLUTsRole-${Suffix}(e.g., PantherLUTsRole-MyLookupTable).
    • The IAM role policy must include the statements defined below:
      "Version": "2012-10-17",
      "Statement": [
      {
      "Action": "s3:GetBucketLocation",
      "Resource": "arn:aws:s3:::<bucket-name>",
      "Effect": "Allow"
      },
      {
      "Action": "s3:GetObject",
      "Resource": "arn:aws:s3:::<bucket-name>/<input-file-path>",
      "Effect": "Allow"
      }
      ]
      }
    • If your S3 bucket is configured with server-side encryption using AWS KMS, you must include an additional statement granting the Panther API access to the corresponding KMS key. In this case, the policy will look something like this:
      "Version": "2012-10-17",
      "Statement": [
      {
      "Action": "s3:GetBucketLocation",
      "Resource": "arn:aws:s3:::<bucket-name>",
      "Effect": "Allow"
      },
      {
      "Action": "s3:GetObject",
      "Resource": "arn:aws:s3:::<bucket-name>/<input-file-path>",
      "Effect": "Allow"
      },
      {
      "Action": ["kms:Decrypt", "kms:DescribeKey"],
      "Resource": "arn:aws:kms:<region>:<your-accound-id>:key/<kms-key-id>",
      "Effect": "Allow"
      }
      ]
      }
  3. 3.
    On the "Setting up role manually" page in Panther, enter the Role ARN.
    • This can be found in the "Outputs" tab of the CloudFormation stack in your AWS account.
  4. 4.
    Click Finish Setup, and you will be redirected to the Lookup Tables list page with your new Employee Directory table listed.
PAT sync via S3

File setup

A Lookup Table requires the following files:
  • A YAML specification file containing the configuration for the table
  • A YAML file defining the schema to use when loading data into the table
  • A JSON or CSV file containing data to load into the table (optional, read further).

Folder setup

All files related to your Lookup Tables must be stored in a folder with a name containing lookup_tables. This could be a top-level lookup_tables directory, or sub-directories with names matching *lookup_tables*. You can use the Panther Analysis repo as a reference.

Writing the configuration files

It's usually prudent to begin writing the schema config first, because the table config will reference some of those values.
  1. 1.
    Create a YAML file for the schema, and save it in the lookup table directory (for example, lookup_tables/my_table/my_table_schema.yml). This schema defines how to read the files you'll use to upload data to the table. If using a CSV file for data, then the schema should be able to parse CSV. The table schema is formatted the same as a log schema. For more information on writing schemas, read our documentation around managing Log Schemas.
  2. 2.
    Next, create a YAML file for the table configuration. For a Lookup Table with data stored in a file in S3, an example configuration would look like this:
    AnalysisType: lookup_table
    LookupName: my_lookup_table # A unique display name
    Schema: Custom.MyTableSchema # The schema defined in the previous step
    Refresh:
    RoleArn: arn:aws:iam::123456789012:role/PantherLUTsRole-my_lookup_table # A role in your organization's AWS account
    ObjectPath: s3://path/to/my_lookup_table_data.csv
    PeriodMinutes: 120 # Sync from S3 every 2 hours
    Description: >
    A handy description of what information this table contains.
    For example, this table might convert IP addresses to hostnames
    Reference: >
    A URL to some additional documentation around this table
    Enabled: true # Set to false to stop using the table
    LogTypeMap:
    PrimaryKey: ip # The primary key of the table
    AssociatedLogTypes: # A list of log types to match this table to
    - LogType: AWS.CloudTrail
    Selectors:
    - "sourceIPAddress" # A field in CloudTrail logs
    - "p_any_ip_addresses" # A panther-generated field works too
    - LogType: Okta.SystemLog
    Selectors:
    - "$.client.ipAddress" # Paths to JSON values are allowed
  1. 3.
    Finally, from the root of the repo, upload the lookup table: panther_analysis_tool upload
  2. 4.
    Upload the schema file by running the update schemas command from the repository root: panther_analysis_tool update-custom-schemas ./schemas

Prerequisites

Before you can configure your Lookup Table to sync with S3, you'll need to have the following ready:
  1. 1.
    The ARN of an IAM role in AWS, which Panther can use to access the S3 bucket. For more information on setting up an IAM role for Panther, see the section on Creating an IAM Role.
  2. 2.
    The path to the file you intend to store data in. The path should be of the following format: s3://bucket-name/path_to_file/file.csv

Configuring Lookup Table for S3

  1. 1.
    Navigate to the YAML specification file for this Lookup Table.
  2. 2.
    In the file, locate (or add) the Refresh field.
  3. 3.
    Specify the RoleARN, ObjectPath, and PeriodMinutes fields. For specs on the allowed values, see our Lookup Table Config File Specification.
  4. 4.
    Save the config file, then upload your changes with panther_analysis_tool.​

Writing a detection using Lookup Table data

After you configure a Lookup Table, you can write detections based on the additional context from your Lookup Table.
For example, if you configured a Lookup Table to distinguish between developer and production accounts in AWS CloudTrail logs, you might want receive an alert only if the following circumstances are both true:
  • A user logged in who did not have MFA enabled.
  • The AWS account is a production (not a developer) account.
See how to create a detection using Lookup Table data below:
Python
Simple Detection
In Python, you can use the deep_get() helper function to retrieve the looked up field from p_enrichment using the foreign key field in the log. The pattern looks like this:
deep_get(event, 'p_enrichment', <Lookup Table name>, <foreign key in log>, <field in Lookup Table>)
The Lookup Table name, foreign key and field name are all optional parameters. If not specified, deep_get() will return a hierarchical dictionary with all the enrichment data available. Specifying the parameters will ensure that only the data you care about is returned.
The rule would become:
from panther_base_helpers import deep_get
def rule(event):
is_production = deep_get(event, 'p_enrichment', 'account_metadata',
'recipientAccountId', 'isProduction')
return not event.get('mfaEnabled') and is_production
Detection:
- Enrichment:
Table: account_metadata
Selector: recipientAccountId
FieldPath: isProduction
Condition: Equals
Value: true
- KeyPath: mfaEnabled
Condition: Equals
Value: false
The Panther rules engine will take the looked up matches and append that data to the event using the key p_enrichment in the following JSON structure:
{
"p_enrichment": {
<name of lookup table>: {
<key in log that matched>: <matching row looked up>,
...
<key in log that matched>: <matching row looked up>,
}
}
}
Example:
{
"p_enrichment": {
"account_metadata": {
"recipientAccountId": {
"accountID": "90123456",
"isProduction": false,
"email": "[email protected]",
"p_match": "90123456"
}
}
}
}
If the value of the matching log key is an array (e.g., the value of p_any_aws_accout_ids), then the lookup data is an array containing the matching records.
{
"p_enrichment": {
<name of lookup table>: {
<key in log that matched that is an array>: [
<matching row looked up>,
<matching row looked up>,
<matching row looked up>
]
}
}
}
Example:
{
"p_enrichment": {
"account_metadata": {
"p_any_aws_account_ids": [
{
"accountID": "90123456",
"isProduction": false,
"email": "[email protected]",
"p_match": "90123456"
},
{
"accountID": "12345678",
"isProduction": true,
"email": "[email protected]",
"p_match": "12345678"
}
]
}
}
}

Testing detections that use enrichment

For rules that use p_enrichment, click Enrich Test Data in the upper right side of the JSON code editor to populate it with your Lookup Table data. This allows you to test a Python function with an event that contains p_enrichment.

Lookup Table History Tables

Lookup Tables will generate a number of tables in the Data Explorer. There are two main types of tables generated:
  1. 1.
    The current Lookup Table version: example
    • Contains the most up to date Lookup Table data
    • Should be targeted in any Saved Searches, or anywhere you expect to see the most current data
    • This table name will never change
    • In the example above, the table is named example
  2. 2.
    The current History Table version: example_history
    • Contains a version history of all data uploaded to the current Lookup Table
    • The table schema is identical to the current Lookup Table (here named example) except for two additional fields:
      • p_valid_start
      • p_valid_end
    • These fields can be used to view the state of the Lookup Table at any previous point in time
When a new schema is assigned to the Lookup Table, the past versions of the Lookup Table and the History Table are both preserved as well.
These past versions are preserved by the addition of a numeric suffix, _### and will be present for both the Lookup Table and the History Table. This number will increment by one each time the schema associated with the Lookup Table is replaced, or each time the primary key of the Lookup Table is changed.
The current Lookup Table and History Table are views that point at the highest numeric suffix table. This means when a new Lookup Table (called example below) is created, you will see 4 tables:
  • example
  • example_history
  • example_001
  • example_history_001
The current-version tables shown here (example and example_history) are views that are pointing at the respective underlying tables (suffixed with _001).
If a new schema is created, then _002 suffixed tables will be created, and the current-version tables will now point at those. The _001 tables will be no longer updated.