Data Models
Data Models provide a way to configure a set of unified fields across all log types
Overview
(event.get('ipAddress') == '127.0.0.1' or
event.get('srcIP') == '127.0.0.1' or
event.get('ipaddr') == '127.0.0.1')event.udm('source_ip') == '127.0.0.1'Built-in Data Models
How to add Data Models
How to create a Data Model using PAT
Folder setup
AnalysisType: datamodel LogTypes: - AWS.CloudTrail DataModelID: AWS.CloudTrail Filename: aws_cloudtrail_data_model.py Enabled: true Mappings: - Name: actor_user Path: $.userIdentity.userName - Name: event_type Method: get_event_type - Name: source_ip Path: sourceIPAddress - Name: user_agent Path: userAgentfrom panther_base_helpers import deep_get def get_event_type(event): if event.get('eventName') == 'ConsoleLogin' and deep_get(event, 'userIdentity', 'type') == 'IAMUser': if event.get('responseElements', {}).get('ConsoleLogin') == 'Failure': return "failed_login" if event.get('responseElements', {}).get('ConsoleLogin') == 'Success': return "successful_login" return None
Using Data Models
Using Data Models in rules
Leveraging existing Data Models
Using Data Models with Enrichment
AWS.VPCFlow logs example

DataModel Specification Reference
DataModel Mappings
Unified Data Model Field Reference
Last updated
Was this helpful?



