LogoLogo
Knowledge BaseCommunityRelease NotesRequest Demo
  • Overview
  • Quick Start
    • Onboarding Guide
  • Data Sources & Transports
    • Supported Logs
      • 1Password Logs
      • Apache Logs
      • AppOmni Logs
      • Asana Logs
      • Atlassian Logs
      • Auditd Logs
      • Auth0 Logs
      • AWS Logs
        • AWS ALB
        • AWS Aurora
        • AWS CloudFront
        • AWS CloudTrail
        • AWS CloudWatch
        • AWS Config
        • AWS EKS
        • AWS GuardDuty
        • AWS Security Hub
        • Amazon Security Lake
        • AWS S3
        • AWS Transit Gateway
        • AWS VPC
        • AWS WAF
      • Azure Monitor Logs
      • Bitwarden Logs
      • Box Logs
      • Carbon Black Logs
      • Cisco Umbrella Logs
      • Cloudflare Logs
      • CrowdStrike Logs
        • CrowdStrike Falcon Data Replicator
        • CrowdStrike Event Streams
      • Docker Logs
      • Dropbox Logs
      • Duo Security Logs
      • Envoy Logs
      • Fastly Logs
      • Fluentd Logs
      • GCP Logs
      • GitHub Logs
      • GitLab Logs
      • Google Workspace Logs
      • Heroku Logs
      • Jamf Pro Logs
      • Juniper Logs
      • Lacework Logs
        • Lacework Alert Channel Webhook
        • Lacework Export
      • Material Security Logs
      • Microsoft 365 Logs
      • Microsoft Entra ID Audit Logs
      • Microsoft Graph Logs
      • MongoDB Atlas Logs
      • Netskope Logs
      • Nginx Logs
      • Notion Logs
      • Okta Logs
      • OneLogin Logs
      • Orca Security Logs (Beta)
      • Osquery Logs
      • OSSEC Logs
      • Proofpoint Logs
      • Push Security Logs
      • Rapid7 Logs
      • Salesforce Logs
      • SentinelOne Logs
      • Slack Logs
      • Snowflake Audit Logs (Beta)
      • Snyk Logs
      • Sophos Logs
      • Sublime Security Logs
      • Suricata Logs
      • Sysdig Logs
      • Syslog Logs
      • Tailscale Logs
      • Teleport Logs
      • Tenable Vulnerability Management Logs
      • Thinkst Canary Logs
      • Tines Logs
      • Tracebit Logs
      • Windows Event Logs
      • Wiz Logs
      • Zeek Logs
      • Zendesk Logs
      • Zoom Logs
      • Zscaler Logs
        • Zscaler ZIA
        • Zscaler ZPA
    • Custom Logs
      • Log Schema Reference
      • Transformations
      • Script Log Parser (Beta)
      • Fastmatch Log Parser
      • Regex Log Parser
      • CSV Log Parser
    • Data Transports
      • HTTP Source
      • AWS Sources
        • S3 Source
        • CloudWatch Logs Source
        • SQS Source
          • SNS Source
        • EventBridge
      • Google Cloud Sources
        • Cloud Storage (GCS) Source
        • Pub/Sub Source
      • Azure Blob Storage Source
    • Monitoring Log Sources
    • Ingestion Filters
      • Raw Event Filters
      • Normalized Event Filters (Beta)
    • Data Pipeline Tools
      • Chronosphere Onboarding Guide
      • Cribl Onboarding Guide
      • Fluent Bit Onboarding Guide
        • Fluent Bit Configuration Examples
      • Fluentd Onboarding Guide
        • General log forwarding via Fluentd
        • MacOS System Logs to S3 via Fluentd
        • Syslog to S3 via Fluentd
        • Windows Event Logs to S3 via Fluentd (Legacy)
        • GCP Audit to S3 via Fluentd
      • Observo Onboarding Guide
      • Tarsal Onboarding Guide
    • Tech Partner Log Source Integrations
  • Detections
    • Using Panther-managed Detections
      • Detection Packs
    • Rules and Scheduled Rules
      • Writing Python Detections
        • Python Rule Caching
        • Data Models
        • Global Helper Functions
      • Modifying Detections with Inline Filters (Beta)
      • Derived Detections (Beta)
        • Using Derived Detections to Avoid Merge Conflicts
      • Using the Simple Detection Builder
      • Writing Simple Detections
        • Simple Detection Match Expression Reference
        • Simple Detection Error Codes
    • Correlation Rules (Beta)
      • Correlation Rule Reference
    • PyPanther Detections (Beta)
      • Creating PyPanther Detections
      • Registering, Testing, and Uploading PyPanther Detections
      • Managing PyPanther Detections in the Panther Console
      • PyPanther Detections Style Guide
      • pypanther Library Reference
      • Using the pypanther Command Line Tool
    • Signals
    • Policies
    • Testing
      • Data Replay (Beta)
    • Framework Mapping and MITRE ATT&CK® Matrix
  • Cloud Security Scanning
    • Cloud Resource Attributes
      • AWS
        • ACM Certificate
        • CloudFormation Stack
        • CloudWatch Log Group
        • CloudTrail
        • CloudTrail Meta
        • Config Recorder
        • Config Recorder Meta
        • DynamoDB Table
        • EC2 AMI
        • EC2 Instance
        • EC2 Network ACL
        • EC2 SecurityGroup
        • EC2 Volume
        • EC2 VPC
        • ECS Cluster
        • EKS Cluster
        • ELBV2 Application Load Balancer
        • GuardDuty Detector
        • GuardDuty Detector Meta
        • IAM Group
        • IAM Policy
        • IAM Role
        • IAM Root User
        • IAM User
        • KMS Key
        • Lambda Function
        • Password Policy
        • RDS Instance
        • Redshift Cluster
        • Route 53 Domains
        • Route 53 Hosted Zone
        • S3 Bucket
        • WAF Web ACL
  • Alerts & Destinations
    • Alert Destinations
      • Amazon SNS Destination
      • Amazon SQS Destination
      • Asana Destination
      • Blink Ops Destination
      • Custom Webhook Destination
      • Discord Destination
      • GitHub Destination
      • Google Pub/Sub Destination (Beta)
      • Incident.io Destination
      • Jira Cloud Destination
      • Jira Data Center Destination (Beta)
      • Microsoft Teams Destination
      • Mindflow Destination
      • OpsGenie Destination
      • PagerDuty Destination
      • Rapid7 Destination
      • ServiceNow Destination (Custom Webhook)
      • Slack Bot Destination
      • Slack Destination (Webhook)
      • Splunk Destination (Beta)
      • Tines Destination
      • Torq Destination
    • Assigning and Managing Alerts
      • Managing Alerts in Slack
    • Alert Runbooks
      • Panther-managed Policies Runbooks
        • AWS CloudTrail Is Enabled In All Regions
        • AWS CloudTrail Sending To CloudWatch Logs
        • AWS KMS CMK Key Rotation Is Enabled
        • AWS Application Load Balancer Has Web ACL
        • AWS Access Keys Are Used Every 90 Days
        • AWS Access Keys are Rotated Every 90 Days
        • AWS ACM Certificate Is Not Expired
        • AWS Access Keys not Created During Account Creation
        • AWS CloudTrail Has Log Validation Enabled
        • AWS CloudTrail S3 Bucket Has Access Logging Enabled
        • AWS CloudTrail Logs S3 Bucket Not Publicly Accessible
        • AWS Config Is Enabled for Global Resources
        • AWS DynamoDB Table Has Autoscaling Targets Configured
        • AWS DynamoDB Table Has Autoscaling Enabled
        • AWS DynamoDB Table Has Encryption Enabled
        • AWS EC2 AMI Launched on Approved Host
        • AWS EC2 AMI Launched on Approved Instance Type
        • AWS EC2 AMI Launched With Approved Tenancy
        • AWS EC2 Instance Has Detailed Monitoring Enabled
        • AWS EC2 Instance Is EBS Optimized
        • AWS EC2 Instance Running on Approved AMI
        • AWS EC2 Instance Running on Approved Instance Type
        • AWS EC2 Instance Running in Approved VPC
        • AWS EC2 Instance Running On Approved Host
        • AWS EC2 Instance Running With Approved Tenancy
        • AWS EC2 Instance Volumes Are Encrypted
        • AWS EC2 Volume Is Encrypted
        • AWS GuardDuty is Logging to a Master Account
        • AWS GuardDuty Is Enabled
        • AWS IAM Group Has Users
        • AWS IAM Policy Blocklist Is Respected
        • AWS IAM Policy Does Not Grant Full Administrative Privileges
        • AWS IAM Policy Is Not Assigned Directly To User
        • AWS IAM Policy Role Mapping Is Respected
        • AWS IAM User Has MFA Enabled
        • AWS IAM Password Used Every 90 Days
        • AWS Password Policy Enforces Complexity Guidelines
        • AWS Password Policy Enforces Password Age Limit Of 90 Days Or Less
        • AWS Password Policy Prevents Password Reuse
        • AWS RDS Instance Is Not Publicly Accessible
        • AWS RDS Instance Snapshots Are Not Publicly Accessible
        • AWS RDS Instance Has Storage Encrypted
        • AWS RDS Instance Has Backups Enabled
        • AWS RDS Instance Has High Availability Configured
        • AWS Redshift Cluster Allows Version Upgrades
        • AWS Redshift Cluster Has Encryption Enabled
        • AWS Redshift Cluster Has Logging Enabled
        • AWS Redshift Cluster Has Correct Preferred Maintenance Window
        • AWS Redshift Cluster Has Sufficient Snapshot Retention Period
        • AWS Resource Has Minimum Number of Tags
        • AWS Resource Has Required Tags
        • AWS Root Account Has MFA Enabled
        • AWS Root Account Does Not Have Access Keys
        • AWS S3 Bucket Name Has No Periods
        • AWS S3 Bucket Not Publicly Readable
        • AWS S3 Bucket Not Publicly Writeable
        • AWS S3 Bucket Policy Does Not Use Allow With Not Principal
        • AWS S3 Bucket Policy Enforces Secure Access
        • AWS S3 Bucket Policy Restricts Allowed Actions
        • AWS S3 Bucket Policy Restricts Principal
        • AWS S3 Bucket Has Versioning Enabled
        • AWS S3 Bucket Has Encryption Enabled
        • AWS S3 Bucket Lifecycle Configuration Expires Data
        • AWS S3 Bucket Has Logging Enabled
        • AWS S3 Bucket Has MFA Delete Enabled
        • AWS S3 Bucket Has Public Access Block Enabled
        • AWS Security Group Restricts Ingress On Administrative Ports
        • AWS VPC Default Security Group Restricts All Traffic
        • AWS VPC Flow Logging Enabled
        • AWS WAF Has Correct Rule Ordering
        • AWS CloudTrail Logs Encrypted Using KMS CMK
      • Panther-managed Rules Runbooks
        • AWS CloudTrail Modified
        • AWS Config Service Modified
        • AWS Console Login Failed
        • AWS Console Login Without MFA
        • AWS EC2 Gateway Modified
        • AWS EC2 Network ACL Modified
        • AWS EC2 Route Table Modified
        • AWS EC2 SecurityGroup Modified
        • AWS EC2 VPC Modified
        • AWS IAM Policy Modified
        • AWS KMS CMK Loss
        • AWS Root Activity
        • AWS S3 Bucket Policy Modified
        • AWS Unauthorized API Call
    • Tech Partner Alert Destination Integrations
  • Investigations & Search
    • Search
      • Search Filter Operators
    • Data Explorer
      • Data Explorer SQL Search Examples
        • CloudTrail logs queries
        • GitHub Audit logs queries
        • GuardDuty logs queries
        • Nginx and ALB Access logs queries
        • Okta logs queries
        • S3 Access logs queries
        • VPC logs queries
    • Visualization and Dashboards
      • Custom Dashboards (Beta)
      • Panther-Managed Dashboards
    • Standard Fields
    • Saved and Scheduled Searches
      • Templated Searches
        • Behavioral Analytics and Anomaly Detection Template Macros (Beta)
      • Scheduled Search Examples
    • Search History
    • Data Lakes
      • Snowflake
        • Snowflake Configuration for Optimal Search Performance
      • Athena
  • PantherFlow (Beta)
    • PantherFlow Quick Reference
    • PantherFlow Statements
    • PantherFlow Operators
      • Datatable Operator
      • Extend Operator
      • Join Operator
      • Limit Operator
      • Project Operator
      • Range Operator
      • Sort Operator
      • Search Operator
      • Summarize Operator
      • Union Operator
      • Visualize Operator
      • Where Operator
    • PantherFlow Data Types
    • PantherFlow Expressions
    • PantherFlow Functions
      • Aggregation Functions
      • Date/time Functions
      • String Functions
      • Array Functions
      • Math Functions
      • Control Flow Functions
      • Regular Expression Functions
      • Snowflake Functions
      • Data Type Functions
      • Other Functions
    • PantherFlow Example Queries
      • PantherFlow Examples: Threat Hunting Scenarios
      • PantherFlow Examples: SOC Operations
      • PantherFlow Examples: Panther Audit Logs
  • Enrichment
    • Custom Lookup Tables
      • Creating a GreyNoise Lookup Table
      • Lookup Table Examples
        • Using Lookup Tables: 1Password UUIDs
      • Lookup Table Specification Reference
    • Identity Provider Profiles
      • Okta Profiles
      • Google Workspace Profiles
    • Anomali ThreatStream
    • IPinfo
    • Tor Exit Nodes
    • TrailDiscover (Beta)
  • Panther AI (Beta)
    • Managing Panther AI Response History
  • System Configuration
    • Role-Based Access Control
    • Identity & Access Integrations
      • Azure Active Directory SSO
      • Duo SSO
      • G Suite SSO
      • Okta SSO
        • Okta SCIM
      • OneLogin SSO
      • Generic SSO
    • Panther Audit Logs
      • Querying and Writing Detections for Panther Audit Logs
      • Panther Audit Log Actions
    • Notifications and Errors (Beta)
      • System Errors
    • Panther Deployment Types
      • SaaS
      • Cloud Connected
        • Setting Up a Cloud Connected Panther Instance
      • Legacy Configurations
        • Snowflake Connected (Legacy)
        • Customer-configured Snowflake Integration (Legacy)
        • Self-Hosted Deployments (Legacy)
          • Runtime Environment
  • Panther Developer Workflows
    • Panther Developer Workflows Overview
    • Using panther-analysis
      • Public Fork
      • Private Clone
      • Panther Analysis Tool
        • Install, Configure, and Authenticate with the Panther Analysis Tool
        • Panther Analysis Tool Commands
        • Managing Lookup Tables and Enrichment Providers with the Panther Analysis Tool
      • CI/CD for Panther Content
        • Deployment Workflows Using Panther Analysis Tool
          • Managing Panther Content via CircleCI
          • Managing Panther Content via GitHub Actions
        • Migrating to a CI/CD Workflow
    • Panther API
      • REST API (Beta)
        • Alerts
        • Alert Comments
        • API Tokens
        • Data Models
        • Globals
        • Log Sources
        • Queries
        • Roles
        • Rules
        • Scheduled Rules
        • Simple Rules
        • Policies
        • Users
      • GraphQL API
        • Alerts & Errors
        • Cloud Account Management
        • Data Lake Queries
        • Log Source Management
        • Metrics
        • Schemas
        • Token Rotation
        • User & Role Management
      • API Playground
    • Terraform
      • Managing AWS S3 Log Sources with Terraform
      • Managing HTTP Log Sources with Terraform
    • pantherlog Tool
    • Converting Sigma Rules
    • MCP Server (Beta)
  • Resources
    • Help
      • Operations
      • Security and Privacy
        • Security Without AWS External ID
      • Glossary
      • Legal
    • Panther System Architecture
Powered by GitBook
On this page
  • Overview
  • Prerequisites
  • Configure GitHub Actions for Panther
  • Step 1: Make use of the Panther-managed detections in the panther-analysis GitHub repo
  • Step 2: Create a new GitHub workflow
  • Step 3: Build a workflow to test detections and upload data
  • Step 4: Push changes
  • Optional: Build a workflow for custom schemas
  • Push changes
  • Optional: Customize your GitHub Actions workflow in Panther
  • Optional: Use Dependabot

Was this helpful?

  1. Panther Developer Workflows
  2. Using panther-analysis
  3. CI/CD for Panther Content
  4. Deployment Workflows Using Panther Analysis Tool

Managing Panther Content via GitHub Actions

Manage detections and schemas in Panther with a CI/CD workflow using GitHub Actions

PreviousManaging Panther Content via CircleCINextMigrating to a CI/CD Workflow

Last updated 16 hours ago

Was this helpful?

Overview

You can configure GitHub Actions to automate testing, customize detections, and upload your detection pipeline from your GitHub repository to your Panther Console. This guide will walk you through the following:

  • Creating a custom workflow via GitHub Actions

  • Testing your custom schemas and detections

  • Uploading the schemas and detections to your Panther Console

  • Customizing your GitHub Actions workflow to fit your organization's needs

See for information on starting your CI/CD workflow with Panther.

Prerequisites

To get started with managing your Panther detections and schemas using GitHub Actions, you will need:

  • A Panther API Token

    • See , and ensure it has the for each command.

    • You will pass this API token as an argument to the panther_analysis_tool command for operations such as uploading/deleting detections, custom schemas, saved queries, and more.

  • Your Panther API Host Name

    • Your Panther API hostname will look like this: https://api.<your-panther-instance-name>.runpanther.net/public/graphql

  • Your Panther API Token added as a GitHub secret under the name API_TOKEN

    • To add the token to Secrets, follow . This secret is shown later in this document as secrets.API_TOKEN.

Configure GitHub Actions for Panther

Step 1: Make use of the Panther-managed detections in the panther-analysis GitHub repo

Step 2: Create a new GitHub workflow

  1. Navigate to the GitHub repository where you would like to set up automation.

  2. On the next page, replace the default filename (main.yml) with a descriptive name, e.g., panther-workflow.yml.

Step 3: Build a workflow to test detections and upload data

  • Add the following code to the YAML file:

GitHub workflow YAML
name: Panther Analysis CI/CD workflow

permissions:
  contents: read

on:  
  push:
    branches:
      - main

jobs: 
  run_unit_tests:    
    runs-on: ubuntu-latest
    name: Run unit tests on detections using the panther_analysis_tool
    steps:
      - name: Check out the repo
        uses: actions/checkout@a5ac7e51b41094c92402da3b24376905380afc29 #v4.1.6
      
      - name: Set python version  
        uses: actions/setup-python@82c7e631bb3cdc910f68e0081d67478d79c6982d #v5.1.0
        with:
          python-version: '3.11'
      
      - name: Install pipenv
        run: pip install pipenv
      
      - name: Install python dependencies and panther_analysis_tool
        run: make venv
      
      - name: Run unit tests for all detections
        run: pipenv run panther_analysis_tool test
      
  panther_analysis_tool_upload:        
    runs-on: ubuntu-latest
    name: Upload detections to panther console using panther_analysis_tool
    needs: [run_unit_tests]
    env:
      PANTHER_API_TOKEN: ${{ secrets.API_TOKEN }}
      PANTHER_API_HOST: "https://api.<your-panther>.runpanther.net/public/graphql"
    steps:
      - name: Checkout the repo
        uses: actions/checkout@a5ac7e51b41094c92402da3b24376905380afc29 #v4.1.6
      
      - name: Set python version  
        uses: actions/setup-python@82c7e631bb3cdc910f68e0081d67478d79c6982d #v5.1.0
        with:
          python-version: '3.11'
      
      - name: Install pipenv
        run: pip install pipenv
      
      - name: Install python dependencies and panther_analysis_tool
        run: make venv
      
      - name: Upload detections to your Panther instance
        # (Optional) Add `--filter Enabled=true` to command below to only upload Enabled detections
        run: pipenv run panther_analysis_tool upload --skip-tests
  • Make sure to update the values of the following environment variable:

    • PANTHER_API_HOST on line 39: Replace <your-panther> with your Panther instance's public GraphQL URL.

This will run the tests you have created on your detections and then upload all your Panther content (Lookup Tables, Data Models, and detections) if they passed.

Step 4: Push changes

  • Run git push.

After the Github Actions workflow is complete, the following will occur the next time you use git push to make changes to the folders in the paths section of the workflow:

  • Custom detections are tested with panther_analysis_tool.

  • Upon success, detections are uploaded to your Panther Console.

Optional: Build a workflow for custom schemas

If you are building custom schemas, use the following YAML code to include the schemas in your workflow:

GitHub workflow YAML with schemas
name: Panther Analysis CI/CD workflow

permissions:
  contents: read

on:  
  push:
    branches:
      - main
    paths:
      - 'schemas/**'

jobs: 
  download_pantherlog_tool:
    runs-on: ubuntu-latest
    name: Download the pantherlog tool to use for schema tests
    steps: 
      - name: Download pantherlog & unzip 
        run: curl -sSO "https://panther-community-us-east-1.s3.amazonaws.com/latest/tools/linux-amd64-pantherlog.zip" && unzip linux-amd64-pantherlog.zip
      
      - name: Create a pantherlog artifact
        uses: actions/upload-artifact@65462800fd760344b1a7b4382951275a0abb4808 #v4.3.3
        with:
          name: pantherlog
          path: pantherlog
          retention-days: 1
  
  run_schema_tests:    
    runs-on: ubuntu-latest
    name: Run schema tests with pantherlog
    needs: [download_pantherlog_tool]
    steps:
      - name: Check out the repo
        uses: actions/checkout@a5ac7e51b41094c92402da3b24376905380afc29 #v4.1.6

      - name: Download Pantherlog tool from artifacts
        uses: actions/download-artifact@65a9edc5881444af0b9093a5e628f2fe47ea3b2e #v4.1.7
        with: 
          name: pantherlog
      - name: Make pantherlog executable
        run: sudo chmod +x pantherlog

      - name: Perform schema tests with pantherlog
        run: ./pantherlog test ./schemas
  
  run_unit_tests:    
    runs-on: ubuntu-latest
    name: Run unit tests on detections using the panther_analysis_tool
    steps:
      - name: Check out the repo
        uses: actions/checkout@a5ac7e51b41094c92402da3b24376905380afc29 #v4.1.6
      
      - name: Set python version  
        uses: actions/setup-python@82c7e631bb3cdc910f68e0081d67478d79c6982d #v5.1.0
        with:
          python-version: '3.11'
      
      - name: Install pipenv
        run: pip install pipenv
      
      - name: Install python dependencies and panther_analysis_tool
        run: make venv
      
      - name: Run unit tests for all rule detections
        run: pipenv run panther_analysis_tool test --filter AnalysisType=rule
      
      - name: Run unit tests for all scheduled rule detections
        run: pipenv run panther_analysis_tool test --filter AnalysisType=scheduled_rule
      
      - name: Run unit tests for all policy detections
        run: pipenv run panther_analysis_tool test --filter AnalysisType=policy
  
  panther_analysis_tool_upload:        
    runs-on: ubuntu-latest
    name: Upload detections to panther console using panther_analysis_tool
    needs: [download_pantherlog_tool, run_schema_tests, run_unit_tests]
    env:
      PANTHER_API_TOKEN: ${{ secrets.API_TOKEN }}
      PANTHER_API_HOST: "https://api.<your-panther>.runpanther.net/public/graphql"
    steps:
      - name: Checkout the repo
        uses: actions/checkout@a5ac7e51b41094c92402da3b24376905380afc29 #v4.1.6
      
      - name: Set python version  
        uses: actions/setup-python@82c7e631bb3cdc910f68e0081d67478d79c6982d #v5.1.0
        with:
          python-version: '3.11'

      - name: Install pipenv
        run: pip install pipenv

      - name: Install python dependencies and panther_analysis_tool
        run: make venv
      
      - name: Upload detections to your Panther instance
        run: pipenv run panther_analysis_tool upload --batch --skip-tests
      
      - name: Upload custom schemas to your Panther Instance
        run: pipenv run panther_analysis_tool update-custom-schemas --path schemas/
  • Make sure to update the values of the following environment variable:

    • PANTHER_API_HOST on line 79: Replace <your-panther> with your Panther instance's public GraphQL URL.

  • This workflow assumes your schemas are stored in a /schemas directory. If they are stored elsewhere, be sure to update the location on lines 11 , 44, and 99.

Push changes

  • Run git push.

Now, the following will occur the next time you use git push to make changes to the folders in the paths section of the workflow:

  • Custom log schemas are tested with pantherlog.

  • Custom detections are tested with panther_analysis_tool.

  • Upon success, schemas and detections are uploaded to your Panther Console.

Optional: Customize your GitHub Actions workflow in Panther

Optionally, you can extend or customize this workflow to better fit your organization. The following are common workflow customizations with Panther:

  • Perform linting against .py files

  • Trigger from an approved Pull Request (PR) instead of a Push to a specific folder.

Optional: Use Dependabot

This guide explains how to upload to your Panther Console via GitHub Actions using Panther API keys and Github secrets. This is the recommended method if you are using GitHub Actions. You can also upload to your Panther Console directly via the panther_analysis_tool. For more information, see .

Follow the documentation to make use of Panther-managed detections in the panther-analysis GitHub repo: .

Within the GitHub repository, navigate to Actions.

Click New Workflow.

Click Set up a workflow yourself →.

This workflow assumes you have added your Panther API token as a GitHub secret under the name API_TOKEN. If you have not already done this, follow the instructions within .

If you'd like this workflow to only trigger on updates to content within certain folders, you can add paths within on.push. Learn more about paths in .

This workflow assumes you have added your Panther API token as a GitHub secret under the name API_TOKEN. If you have not already done this, follow the instructions within .

If you fork the repository by the latest tag, learn how can help keep Panther detections up-to-date. We recommend syncing weekly by tag.

For more information on GitHub Actions, please see .

is a commonly used integration in GitHub that continually audits a repository's dependencies for security risks and available updates. Panther manages the upstream runtime environment (i.e., ), however, you can use Dependabot for an added layer of security. To set up Dependabot for your Panther respository, follow the GitHub .

Dependabot can open pull requests to update your dependencies. Dependabot cannot, however, access your repository's secrets. This means that GitHub Actions that require API secrets (such as the ) will fail for pull requests opened by Dependabot.

To work around this, follow the GitHub . Using this method, you must add API_HOST and API_TOKEN as secrets.

Panther Analysis Tool
Using the Panther detections repo
GitHub's documentation
panther-analysis
syncing a fork
GitHub's documentation
Dependabot
panther-analysis
Dependabot quickstart guide
test Action
instructions for storing a separate set of repository secrets specifically for Dependabot
Prerequisites
Prerequisites
CI/CD for Panther Content
GitHub's documentation: Creating encrypted secrets for a repository
See this section for usage examples.
these instructions on generating an API token
correct permissions